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Abstract 
 

The time domain characterization of the frequency fluctuations is usually expressed in 
terms of the Allan variance, )(2

y τσ , or the modified Allan variance, Mod )(2
y τσ .  Both 

variances can be accurately determined by the integral relations to )f(S y , the power spectral 
density of fractional frequency fluctuations, which include five types of noise:  White PM, 
Flicker PM, White FM, Flicker FM and Random Walk FM.  These noise types are 
distinguished by the integer powers )(α  in their functional dependence on Fourier frequency 
f .  Because the noise is inherent to all kinds of oscillators and measurement systems, 

specifying their contributions to the time domain frequency stability is important and 
meaningful.  In this paper, both the numerical integral and the curve-fitting methods are 
presented to estimate the frequency stability from the results of phase noise measurement of 
oscillators, amplifiers, etc.  The numerical integral is a direct way to use and we calculate the 
integral approximation after smoothing some spike points.  In addition, owing to the properties 
of power-law noise processes, the weighting coefficient αh of each type of noise component 
could be estimated when curve-fitting skills are adopted.  Cutler’s formula is used to calculate 
the integral approximation using these coefficients.  The approximations of frequency stability 
from these two ways are compared and analyzed.  Lastly, the limitations and possible errors 
from the estimating methods are also discussed. 
 
 

INTRODUCTION 
 
In this paper, we are trying to use the phase noise measurement results to calculate the time domain 
frequency stability due the conversion between time and frequency domain.  In general, if the spectral 
density of the normalized frequency fluctuations )f(S y  is known, its mathematical relation to the Allan 
variance can be expressed as: 
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where hf is the high frequency cutoff of a low pass filter.  From equation (1), the Allan variance can be 
straightforwardly calculated while numerical integration is adopted.  Besides, the power-law model is 
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frequently used for describing phase noise from oscillators, amplifiers, etc.  It assumes that the spectral 
density of fractional frequency fluctuations is equal to the sum of terms, each of which varies as an 
integer power of frequency.  Thus, there are two quantities that completely specify )f(S y  for a particular 
power-law process:  the slope on a log-log plot for a given range of f  and the amplitude.  The slope is 
denoted by α  and, therefore, αf  is the straight line on a log-log plot that relates )f(S y  to f .  The 
amplitude is denoted by αh  and hence: 
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The Allan variance derived by Cutler from equation (1) and (2) is as follows [1-2]:  
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If the value for each weighting coefficient αh  is appropriately determined, then the Allan variance could 
be calculated.  This is carried out by the curve-fitting skills discussed below. 
 
 

THE  EXPERIMENTS 
 
The measurement system consists of a FSS1000E phase noise detector, a FSSM100 noise standard, a 
FSS1011A delay line unit, a SDI LNFR-400 low-noise frequency standard, and a SRS-760 fast Fourier 
transformer (FFT) which is used to analyze the output signal from the phase noise detector.  The 
measurement processes and data recording could be automated under software TestStation version 3.0.  
 
All the measurement system including the DUTs should be warmed up for at least 24 hours before any 
test.  The first experiment was the system noise floor test.  We used a power splitter to divide the LNFR-
400 10-MHz output into two signals and then followed the procedure for passive component 
measurement.  In the second experiment, the phase noise of a 5-MHz frequency output from the hydrogen 
maser 76052 was measured using the phase-lockable LNFR-400 serving as a reference.  Both  
experimental results are shown in Figure 1 and Figure 2.  
 
 
CALCULATION  OF  EXPERIMENTAL  RESULTS 
 
In the frequency domain, )f(L  is the prevailing measure of phase noise among manufacturers and users 
of frequency standards, and it is defined as [3]: 
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where )f(Sφ  is the spectral density of phase fluctuations.  In Figure1, it is an )f(L  vs. f  plot with its x-
y axis in log scale.  For f = 1Hz~1000 Hz, we see that when f  increases by one decade, )f(L  also goes 
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down by one decade.  This noise process can be identified as flicker PM.  For f = 10~99.75 kHz, we have 
white PM.  In the region f = 1 kHz~10 kHz, it seems that flicker PM and white PM coexist and none of 
them could surpass each other.  After smoothing some spike points in the raw data, a transformation from 

)f(L  to )f(S y  was made.  We used the function 1
1 fh)f(S y =  and 2

2 fh)f(S y = to fit the data in the 
flicker PM and white PM region separately, and then got 1h = 9.9067× 10-29 and 2h = 6.1496× 10-32.  To 
make sure the values of 1h and 2h  were appropriately determined, we calculated their contributions of 

)f(S y  in the flicker PM and white PM region, and verified that the interactions between these two 
coefficients were insignificant.  
 
In Figure3, the blue line shows the results from )f(L  to )f(S y  transformation and the red line is 
residuals of the former after the contributions of power-law model 2

2
1

1 fhfh + and some outlying points 
have been removed.  Figure4 shows the Allan deviations )(y τσ  calculated from the numerical integration 
and the power-law method with the cutoff frequency hf = 99.75 kHz and averaging period τ  = 0.1~10 s. 
The Allan deviations from these two methods are in good agreement with each other (the relative errors 
are less than 6 %) except when τ  is equal to 0.1 s and 10 s.  
 
Following a similar procedure to deal with the experimental results in Figure 2, three kinds of noise 
processes including white FM ( 0h = 5.6315× 10-25), flicker PM ( 1h = 2.1948× 10-26), and white PM ( 2h = 
5.0359× 10-29) could be identified.  The relative diagrams are shown in Figure 5 and Figure 6.  We 
observed that the growing rate of the relative errors became faster when τ  increases and that there are two 
abrupt plunges in the numerical integration when τ  is equal to 0.1 s and 10 s. 
 
 
CONCLUSION 
 
In this paper, we calculated and compared the time domain frequency stability using the numerical 
integral and the curve-fitting methods.  The curve-fitting method is useful to obtain the value of a 
weighting coefficient after identifying the Fourier frequency range for a certain power-law process.  As 
for the numerical integration, it is straightforward to use, but its generated results change abruptly for 
some values of τ .  In order to solve this problem, more research will be done in the future.  
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Figure 1.  Phase noise measurement of LNFR-400 self test (10 MHz). 
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Figure 2.  Phase noise measurement of H-maser 76052 (5 MHz). 
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Figure 3.  )( fS y  and its residual after the contributions of power- 
     spectral model and outlying points have been removed. 
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Figure 4.  Allan deviations from two different methods (LNFR-400 self test). 
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Figure 5.  )( fS y  and its residual after the contributions of power- 
     spectral model and outlying points have been removed. 
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Figure 6.  Allan deviations from two different methods (H-maser 76052). 
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QUESTIONS  AND  ANSWERS 
  
DAVE HOWE (National Institute of Standards and Technology):  One of the problems with doing a 
curve fit to something like L (f) – L (f) itself is smoothed, that is, the residuals are not white.  What 
measures did you take to show that the residuals are white in the curve-fitting process?  And what sort of 
FFT window function did you use? 
 
PO-CHENG CHANG:  We didn’t consider many vectors.  So it was a very easy way to calculate it. 
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